Learning Significant Locations and Predicting User Movement with GPS
نویسندگان
چکیده
Wearable computers have the potential to act as intelligent agents in everyday life and assist the user in a variety of tasks, using context to determine how to act. Location is the most common form of context used by these agents to determine the user’s task. However, another potential use of location context is the creation of a predictive model of the user’s future movements. We present a system that automatically clusters GPS data taken over an extended period of time into meaningful locations at multiple scales. These locations are then incorporated into a Markov model that can be consulted for use with a variety of applications in both single–user and collaborative scenarios.
منابع مشابه
Developing a Recommendation Framework for Tourist by Mining Geo-tag Photos (Case Study Tehran District 6)
With the increasing popularity of sharing media on social networks and facilitating access to location technologies, such as Global Positioning System (GPS), people are more interested to share their own photos and videos. The world wide web users are no longer the sole consumer but they are producers of information also, hence a wealth of information are available on web 2.0 applications. The ...
متن کاملGPS Measurement Error Gives Rise to Spurious 180° Turning Angles and Strong Directional Biases in Animal Movement Data
BACKGROUND Movement data are frequently collected using Global Positioning System (GPS) receivers, but recorded GPS locations are subject to errors. While past studies have suggested methods to improve location accuracy, mechanistic movement models utilize distributions of turning angles and directional biases and these data present a new challenge in recognizing and reducing the effect of meas...
متن کاملUnderstanding People Lifestyles: Construction of Urban Movement Knowledge Graph from GPS Trajectory
Technologies are increasingly taking advantage of the explosion in the amount of data generated by social multimedia (e.g., web searches, ad targeting, and urban computing). In this paper, we propose a multi-view learning framework for presenting the construction of a new urban movement knowledge graph, which could greatly facilitate the research domains mentioned above. In particular, by viewi...
متن کاملMining Significant Semantic Locations From GPS Data
With the increasing deployment and use of GPS-enabled devices, massive amounts of GPS data are becoming available. We propose a general framework for the mining of semantically meaningful, significant locations, e.g., shopping malls and restaurants, from such data. We present techniques capable of extracting semantic locations from GPS data. We capture the relationships between locations and be...
متن کاملLearning Trajectory Information with Neural Networks and the Markov Model to Develop Intelligent Location-Based Services
In the development of location-based services, various location-sensing techniques and experimental/commercial services have been used. However, conventional location-based services are limited in terms of flexibility because they depend on the current location of the user. We propose a novel method of predicting the user’s future movements in order to develop advanced location-based services. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001